Aluksi muisteltiin edellisen viikon asioita lyhyesti, ja vilkaistiin mm. Matlab-demoa, jolla voidaan piirtää hiirellä projektiosuora kaksiulotteisen datan koordinaatistoon. Kun kaksi pistettä suoralta on merkitty, Matlab-skripti projisoi datan tälle suoralle ja piirtää tuloksena saatavien yksiulotteisten näytteiden jakauman sekä luokitteluprosentin. Hyvillä projektiosuorilla data oli täydellisesti luokiteltavissa, mutta huonoilla joukot menivät päällekkäin projisoinnin jälkeen. Fisherin lineaarinen erottelija laskee tämän suoran automaattisesti niin että erottelu on optimaalinen.
Seuraavaksi tutustuttiin tukivektorikoneeseen, ja tarkasteltiin lähemmin kernelitemppua. Kernelitemppu kuvaa näytteet korkeampiulotteiseen avaruuteen, jossa ne toivottavasti ovat paremmin eroteltavissa. Itse kuvausta ei kuitenkaan tarvitse käytännössä tehdä, vaan riittää korvata menetelmässä jokainen vektorien välinen sisätulo <x,y> jollain muulla funktiolla k(x,y). Tiettyjen reunaehtojen vallitessa voidaan osoittaa tämän olevan sama asia kuin kuvaus tiettyyn korkeampiulotteiseen avaruuteen ennen luokittelua. Periaatteessa tämä kyseinen kuvaus voidaan laskeakin, mutta yleensä se ei sinänsä ole kovin kiinnostavaa. Sen sijaan voidaan kokeilla erilaisia kerneleitä, ja katsoa millä niistä luokittelutulos on paras. Yleisesti käytettyjä kerneleitä ovat mm. polynomikernelit k(x,y) = (<x,y>)^n ja k(x,y) = (1 + <x,y>)^n sekä ns. RBF-kerneli k(x,y) = exp(-||x-y||).
Tämän jälkeen paneuduttiin hermoverkkojen opetukseen, ja mainittiin lyhyesti opetusalgoritmin perustuvan derivaattaan ja ketjusääntöön. Näiden avulla voidaan päätellä suunta, jossa luokitteluvirhe pienenee jyrkimmin, ja kyseiset kaavat löytyvät esim. täältä. Perus- backpropagationin lisäksi on olemassa kehittyneempiä ja nopeampia opetusalgoritmeja, ja esim. Matlabissa niitä on lähes parikymmentä. Olennaisin ero algoritmien välillä on niiden nopeudessa ja muistin tarpeessa.
Ei kommentteja:
Lähetä kommentti