keskiviikko 26. maaliskuuta 2014

Näytteenottotaajuuden muuntelu

Tänään luennon aluksi vilkaistiin välikoetta sekä sen tuloksia.

Tämän jälkeen käsiteltiin alku kappaleesta "näytteenottotaajuuden muuntelu". Kappale tarkastelee menetelmiä, joilla voidaan muuntaa näytteenottotaajuus näytteistämisen jälkeen toiseksi. Perusoperaatiot ovat desimointi ja interpolointi, jotka toimivat kokonaislukukertoimilla. Näitä yhdistelemällä saadaan kaikki rationaalikertoimet. Molemmat operaatiot tarvitsevat alipäästösuodattimen, joka on yleensä FIR, ja suunnitellaan normaaleilla menetelmillä. Suotimen siirtymäkaistasta todettiin, että se laitetaan aina rajataajuuden alapuolelle. Näin signaaliin tulee vähemmän virhettä kuin jos laskostumista pääsisi tapahtumaan.

Desimoinnissa tapahtuva näytteenottotaajuuden pieneminen toteutetaan yksinkertaisesti jättämällä näytteitä pois tasaisin väliajoin. Esimerkiksi kertoimella kolme jätetään vain joka kolmas näyte jäljelle. Tämä kuitenkin aiheuttaa laskostumista, koska signaalin sisältämät taajuudet pysyvät samoina mutta näytteenottotaajuus pienenee. Tämä saadaan luonnollisesti estettyä suodattamalla signaali ennen alinäytteistämistä sopivalla alipäästösuotimella.

Interpolointi puolestaan koostuu nollien lisäämisestä sekä tämän operaation tuottamien roskien poistamisesta. Nollien lisääminenhän tuottaa kopioita ja peilikuvia alkuperäisestä spektristä, jotka voidaan myös poistaa kätevästi alipäästösuodatuksella.

Kappaleessa luodaan myös katsaus interpoloinnin ja desimoinnin yhdistämiseen, jolloin päästään yksinkertaisempaan rakenteeseen huomaamalla kokonaisuudessa olevan kaksi suodatinta peräkkäin, jotka molemmat poistavat tietyn kaistan ylätaajuuksilta. Näin ollen vain toinen niistä on tarpeellinen. Piirtämällä kuva näiden suodinten amplitudivasteista voidaan päätellä kumpi on tarpeeton (aina se, jota vastaava muunnoskerroin on isompi).

keskiviikko 19. maaliskuuta 2014

Äärellinen sanapituus

Tänään luento aloitettiin pikaisella ekskursiolla erääseen kuvankäsittelyongelmaan. Esimerkki perustui muutama vuosi sitten toteutettuun tutkimushankkeeseen, jossa tavoitteena oli löytää pienhiukkasia SEM-mikroskoopin kuvista. Demottu menetelmä korosti ensin mielenkiintoiset hiukkaset muotoon perustuvalla morfologisella tophat-muunnoksella, jonka jälkeen hiukkaset etsittiin Otsun kynnystyksellä. Löydetyistä kohteista karsittiin liian pienet pois Matlabin bwareaopen-funktiolla, ja lopuksi laskettiin jäljelle jääneiden kohteiden kokojakauma labeling-algoritmilla.

Kuva-analyysidemon jälkeen palattiin prujun aiheeseen. Muistelimme äärellisen sananpituuden vaikutusta A/D-muunnoksessa, ja osoitettiin että kvantisointikohinan odotusarvo on nolla ja varianssin yhtä kuin 2^(-2b) / 12.

Yllä olevaa kaavaa voidaan edelleen jalostaa signaali-kohinasuhteen käsitteeksi (SNR), joka kertoo signaalin tehon suhteessa kohinan tehoon. Kun kaavaa pyöriteltiin, havaittiin jokaisen ylimääräisen bitin (per näyte) nostavan SNR:ää kuudella bitillä.

Lopuksi johdettiin kaava varianssille suodatuksen jälkeen ja sekä tutkittiin suotimen kertoimien pyöristämisen vaikutusta. Tämähän täytyy tehdä aina kun suodin toteutetaan huonomman tarkkuuden alustalla kuin Matlab (esim. tällä 17-bitin DSP:llä).

Toisen tunnin lopuksi käsiteltiin alku kappaleesta "näytteenottotaajuuden muuntelu". Kappale tarkastelee menetelmiä, joilla voidaan muuntaa näytteenottotaajuus näytteistämisen jälkeen toiseksi. Perusoperaatiot ovat desimointi ja interpolointi, jotka toimivat kokonaislukukertoimilla. Näitä yhdistelemällä saadaan kaikki rationaalikertoimet. Molemmat operaatiot tarvitsevat alipäästösuodattimen, joka on yleensä FIR, ja suunnitellaan normaaleilla menetelmillä.

keskiviikko 12. maaliskuuta 2014

IIR-suodinten suunnittelu ja kvantisointi

Tänään luennon ensimmäisellä tunnilla tutkittiin Matlabin valmiita IIR-suodattimen suunnittelumenetelmiä.

Tässä yhteydessä muisteltiin ns. pole-zero-placement -suunnittelumenetelmää, jossa hiirellä sijoiteltiin napoja ja nollia yksikköympyrälle ja laskettiin näitä vastaava suodin. Alla olevassa kuvassa on eräs näin saatu napanollakuvio, jossa tavoitellaan alipäästösuodinta. Tätä vastaava amplitudivaste on seuraavassa kuvassa, jossa selvästi erottuu hyppäys ylös- tai alaspäin jokaisen lähellä kehää olevan navan tai nollan kohdalla. Alimmassa kuvassa on vielä esitetty siirtofunktion itseisarvo |H(z)|, josta saadaan keskimmäinen amplitudivasteen |H(exp(iw))| kuvaaja sijoittamalla exp(iw) lausekkeessa z:n tilalle. Edellä kuvattu menetelmä ei luonnollisestikaan ole kovin tarkka. 

Toisen tunnin aihe olikin täsmällisempi IIR-suodinten suunnittelu, joka käytiin melko yleisellä Matlab-komentojen osaamisen tasolla. Kappaleen ydin on koottu monisteen taulukkoon, jossa suodintyyppejä vertaillaan amplitudivasteen ominaisuuksien ja kertoimien määrän suhteen. Kertoimia tarvitaan eri menetelmillä 29+28, 13+12 ja 8+7 kappaletta. Suurin määrä tulee Butterworth-suotimella ja pienin elliptisellä suotimella. Kahden Chebyshev-suotimen kerroinmäärä on näiden kahden ääripään välissä. Vertailun vuoksi FIR-suotimen kertoimien määrä vastaavilla vaatimuksilla olisi N = [5.5/0.035] = 159 käytettäessä Blackman-ikkunaa.
 
Muita luennolla esiin tulleita seikkoja olivat mm.
  • Matlabin kerroinvektorit a ja b eivät ole suoraan käytettävissä ulostulon y(n) laskennassa, vaan takaisinkytkentäkertoimien (siis esim. termin y(n-1) kertoimen) merkki täytyy vaihtaa vastakkaiseksi.
  • Elliptisellä suotimella on aina vähemmän kertoimia kuin muilla. Lisäksi tasavärähtely-ominaisuus on yleensä hyvä asia.
IIR-suotimen etuna on siis pienempi kertoimien tarve. Haittapuolina mahdollinen epästabiilisuus sekä numeeriset ongelmat toteutuksessa. Tästä esimerkkinä mainittiin kurssin SGN-16006 signaaliprosessorityö, jossa täytyy toteuttaa IIR-suodin. Käytännössä yli toisen asteen IIR-suodinta ei voi toteuttaa numeeristen ongelmien vuoksi. Sen sijaan suodin täytyy jakaa peräkkäisiin toisen asteen lohkoihin esim. Matlabin TF2SOS-funktiolla.

Toisella tunnilla käsiteltiin äärellisen sananpituuden vaikutuksia. Meidän tarkastelussamme nämä ilmenevät A/D-muunnoksen yhteydessä sekä suodatettaessa äärellisellä laskentatarkkuudella. Pääpaino on ensimmäisessä tyypissä. Luennolla käsiteltiin näytteistyksessä käytettävät kvantisointitasot: esimerkiksi (1+7) bitin esityksessä käytettävissä ovat seuraavat 256 tasoa: -128/128, -127/128, ..., 0, ..., 126/128, 127/128. 
 
Pyöristettäessä lähimpään lukuun syntyvä kvantisointivirhe on aina välillä -1/256...1/256. Yleisesti pyöristys (1+b) bittiin aiheuttaa enintään virheen 2^(-b) / 2 suuntaan tai toiseen. Vasemmalla olevassa kuvassa on esimerkkitapaus jossa "seiska" kvantisoidaan 1+9 bittiin.

 
Seuraavaksi tätä yksinkertaista virhemallia käytettiin johdettaessa arvio virheen varianssille, joka on suoraan verrannollinen syntyvän kvantisointivirheen tehoon. Tätä kautta määritellään SNR, eli signaali-kohinasuhde, eli häiriöetäisyys. Tämä suure kertoo jotain äänenlaadusta, ja saatavia tuloksia tullaan tarvitsemaan kappaleessa 6, kun päätellään montako bittiä signaalista uskalletaan poistaa kompressiossa ilman äänenlaadun havaittavaa heikkenemistä.

Jos ehtojen oletetaan olevan voimassa, voidaan osoittaa kohinan odotusarvon olevan nolla ja varianssin yhtä kuin 2^(-2b) / 12.